EXERCICE 3.1.:

Puisque l'orientation ne change pas si on multiplie les vecteurs par des scalaires positifs, quitte à diviser u et v par leur norme, on peut supposer que u et v sont de norme 1. On se donne une base orthonormée directe $\mathcal{B} = (u, v')$. Il existe alors une rotation r telle que r(u) = v. On sait qu'il existe alors $\theta \in [0, 2\pi]$ tel que la matrice de r dans

$$\mathcal{B}$$
 soit $r = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$. On en déduit que

$$v = r(u) = r(\begin{pmatrix} 1 \\ 0 \end{pmatrix}) = \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}_{\mathcal{B}}.$$

On a alors

$$\det(u, v) = \det\begin{pmatrix} 1 & \cos(\theta) \\ 0 & \sin(\theta) \end{pmatrix} = \sin(\theta).$$

Autrement dit, on a

$$(u, v)$$
 directe \Leftrightarrow $\det(u, v) > 0$
 \Leftrightarrow $\sin(\theta) > 0$
 \Leftrightarrow $\theta \in [0, \pi].$

Finalement, on a

$$\begin{array}{rcl} BC & = & 2BI \\ & = & 2|\sin\left(\overrightarrow{OB},\overrightarrow{OI}\right)\big)|OB \\ & = & 2|\sin\left(\overrightarrow{AB},\overrightarrow{AC}\right)\big)|R \\ & = & 2R\sin(A). \end{array}$$

EXERCICE 3.3.:

On en déduit que $\langle \overrightarrow{AB}, \overrightarrow{AC} \rangle = \frac{b^2 + c^2 - a^2}{2}$. L'égalité $\langle \overrightarrow{AB}, \overrightarrow{AC} \rangle = AB.AC.\cos\left((\overrightarrow{AB}, \overrightarrow{AC})\right) = bc\cos(A)$ termine la démonstration.

sont d'intersection totale vide, les bissectrices ne sont pas concourantes.

Point de concourance des bissectrices intérieures :

On note $I = \delta_A \cap \delta_B$. On a alors

$$d(I, (BC)) = d(I, (AB)) = d(I, (AC)),$$

autrement dit, I est sur une bissectrice de l'angle \hat{C} . Comme I est à l'intérieur du triangle ABC, c'est forcément le bissectrice intérieure.

Point de concourance des bissectrices extérieures :

On note $J = \Delta_B \cap \Delta_C$. On a alors

$$d(J, (AB)) = d(J, (BC)) = d(J, (AC)),$$

autrement dit, J est sur une bissectrice de l'angle \hat{A} . Comme les bissectrices extérieures ne se coupent pas, la bissectrice en question ne peut être Δ_A , c'est donc δ_A . D'après le commentaire du début d'exercice, J est de plus à l'extérieur du triangle ABC.

EXERCICE 3.2.:

On va montrer que $\frac{a}{\sin(a)}=2R.$ Les autres égalités se démontrent par permutation circulaire des sommets A,B,C.

On note O le centre du cercle circonscrit au triangle ABC et I le milieu de [BC]. Le théorème de l'angle inscrit nous donne

$$2(\overrightarrow{AB}, \overrightarrow{AC}) = (\overrightarrow{OB}, \overrightarrow{OC}) (2\pi)$$
$$= 2(\overrightarrow{OB}, \overrightarrow{OI}) (2\pi)$$

d'où

$$(\overrightarrow{AB}, \overrightarrow{AC}) = (\overrightarrow{OB}, \overrightarrow{OC}) \qquad (\pi).$$

EXERCICE 3.4.:

On note $\delta_A, \delta_B, \delta_C$ les bissectrices intérieures et $\Delta_A, \Delta_B, \Delta_C$ les bissectrices extérieures respectivement des angles A, B, C.

On vérifiera que les bissectrices intérieures se coupent deux à deux, ainsi que les les bissectrices extérieures. L'intersection de deux bissectrices intérieures est à l'intérieur du triangle ABC (on pourra considérer les cônes convexes issus des angles.)

L'intersection de Δ_A et Δ_B se trouve sur le demi-plan de frontière (AB) ne contenant pas C. $(\Delta_A$ et Δ_B sont respectivement dans le complémentaire des cônes engendrés par les angles \hat{A} et \hat{B}). Comme ces trois demi-plans

EXERCICE 3.5.:

On pose Δ la médiatrice de [AB]. La réflexion d'axe Δ envoie A sur B et laisse C invariant. Toute réflexion renversant les angles, on obtient

$$(\overrightarrow{AB}, \overrightarrow{AC}) = -(\overrightarrow{BA}, \overrightarrow{BC}) = (\overrightarrow{BC}, \overrightarrow{BA}).$$

EXERCICE 3.6.:

respectivement dans le complémentaire des cônes engendrés par les angles \hat{A} et \hat{B}). Comme ces trois demi-plans à t est une rotation vectorielle d'angle $-\theta + \theta = 0$. C'est donc l'identité. Autrement dit, t est une translation. Comme $t(A) = \rho_{B,-\theta} \circ \rho_{A,\theta}(A) = \rho_{B,-\theta}(A)$, si on note $A' = \rho_{B,-\theta}(A)$, on a

$$t = t_{\overrightarrow{AA'}}$$
.

EXERCICE 3.7.:

Remarque : pour tout nombre complexe z, on note $\Re(z)$ sa partie réelle et $\Im(z)$ sa partie imaginaire.

1. Translations:

Soient u un vecteur d'image b dans \mathbb{C} , M(z) et M'(z') On a

$$M' = t_u(M) \Leftrightarrow M' = M + u$$

 $\Leftrightarrow MM' = u$
 $\Leftrightarrow z' - z = b$
 $\Leftrightarrow z' = z + b$.

2. Rotations:

Soit r une rotation de centre A et d'angle $\theta \in [0, 2\pi]$. Soient M(z) et M'(z') deux points. On note z = x + iy et z' = x' + iy' où $x, x', y, y' \in \mathbb{R}$. On a

$$M' = r(M) \iff \overrightarrow{AM'} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \overrightarrow{AM}$$

$$\Leftrightarrow \begin{pmatrix} x' - x_A \\ y' - y_A \end{pmatrix} = \begin{pmatrix} (x - x_A)\cos(\theta) - (y - y_A)\sin(\theta) \\ (x - x_A)\sin(\theta) + (y - y_A)\cos(\theta) \end{pmatrix}$$

On remplace les parties réelles et imaginaires par $\Re(w)=\frac{w+\bar{w}}{2}$ et $\Im(w)=\frac{w-\bar{w}}{2i}$ dans le résultat précédent pour tout complexe w et on trouve en fait

$$z' - z_A = a(z - z_A),$$

où $a = e^{i\theta}$. En posant $b = az_A + z_A$, on obtient bien la forme voulue z' = az + b.

De même, pour toute forme z'=az+b, comme $a\neq 1$, on peut trouver $z_A=\frac{b}{a-1}$ tel que $z'-z_A=a(z-z_A)$.

3. Réflexions :

Supposons qu'on ait une réflexion s par rapport à une droite $\Delta=(AB)$. Il existe une rotation r de centre O (centre du repère affine) telle que $r(\Delta)$ soit une droite Δ' parallèle à l'axe des abscisses. On pose alors $f=r\circ s$. C'est une réflexion d'axe Δ' . On note $\Im(z)=c$ l'équation de Δ' dans le plan complexe.

On se donne maintenant M(z) et M(z') deux points du plan et on note H la projection de M sur Δ' . On a

$$M' = f(M) \Leftrightarrow \overrightarrow{M'H} = \overrightarrow{HM}$$

$$\Leftrightarrow \begin{pmatrix} \Re(h) - \Re(z') \\ \Im(h) - \Im(z') \end{pmatrix} = \begin{pmatrix} \Re(z) - \Re(h) \\ \Im(z) - \Im(h) \end{pmatrix}$$

Or on a $\Re(h) = \Re(z)$ et $\Im(h) = c$. On en déduit que

$$M' = f(M) \Leftrightarrow \begin{pmatrix} \Re(z') - \Re(z) \\ c - \Im(z') \end{pmatrix} = \begin{pmatrix} 0 \\ \Im(z) - c \end{pmatrix}$$
$$\Leftrightarrow \begin{cases} \Re(z') = \Re(z) \\ \Im(z') - c = -(\Im(z) - c). \end{cases}$$

Autrement dit, on a M' = f(M) si et seulement si

$$z' = \bar{z} + 2c.$$

Pour terminer la correspondance, il faut encore retrouver s. Si r=Id, il n'y a rien à faire. Sinon, d'après le cas des rotations, il existe $\theta \in]0,2\pi]$ et $b_0 \in C$ tel que $r^{-1}(z)=e^{i\theta}z+b_0$. On obtient le résultat cherché par composition.

${f 4.}$ symétries glissées :

Soit s une symétrie glissée. Il existe alors un axe Δ et un vecteur \overrightarrow{u} non nul d'affixe u tels que $s=t_{\overrightarrow{u}}\circ s_{\Delta}$. Pour M(z) dans le plan, on pose $M''=s_{\Delta}(M)$ et z'' l'affixe de M''. Soit finalement M'(z') un point quelconque. Les expressions des translations et symétries étant connues, on sait qu'il existe a et b_0 tels que $|a|=1, a\neq 1, a\bar{b}_0+b_0=0$ et $z''=a\bar{z}+b_0$.

$$\begin{split} M' = s(M) &\Leftrightarrow M' = t_{\overrightarrow{u}} \circ s_{\Delta}(M) \\ &\Leftrightarrow M' = t_{\overrightarrow{u}}(M'') \\ &\Leftrightarrow z' = z'' + u \\ &\Leftrightarrow z' = a\overline{z} + \underbrace{b_0 + u}_{b}. \end{split}$$

On vérifie que $a\bar{b}+b=a\bar{u}+u\neq 0$. On vérifiera également que l'on sait faire la réciproque.

EXERCICE 3.8.:

Une transformation affine f s'écrit

$$f(z) = az + b\bar{z} + c$$

dans le plan complexe.

• Voyons déjà que toute application affine s'écrit ainsi.

Pour le prouver, on pose $\Omega(w)$, M(z) et M'(z') trois points du plan. On a alors $f(M) = f(\Omega) + \overrightarrow{f}(\overrightarrow{\Omega M})$. Comme \overrightarrow{f} est un endomorphisme de \mathbb{R}^2 , il existe $\alpha, \beta, \gamma, \lambda \in \mathbb{R}$ tels que $\overrightarrow{f} = \begin{pmatrix} \alpha & \beta \\ \gamma & \lambda \end{pmatrix}$ dans \mathbb{R}^2 . Si on note z = x + iy, $w = x_w + iy_w$ et z' = x' + iy', on trouve

$$\overrightarrow{f}(x,y) = \begin{pmatrix} \alpha & \beta \\ \gamma & \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

$$= \begin{pmatrix} \alpha(x - x_w) + \beta(y - y_w) \\ \gamma(x - x_w) + \lambda(y - y_w) \end{pmatrix}.$$

Comme $x = \frac{z + \bar{z}}{2}$ et $y = \frac{z - \bar{z}}{2i}$, on trouve

$$f(x,y) = A(z-w) + B\overline{(z-w)},$$

où $A = \frac{1}{2} \begin{pmatrix} \alpha - i\beta \\ \gamma - i\lambda \end{pmatrix}$ et $B = \frac{1}{2} \begin{pmatrix} \alpha + i\beta \\ \gamma + i\lambda \end{pmatrix}$ Dans le plan complexe, il existe donc $c \in \mathbb{C}$ tel que

$$f(z) = az + b\bar{z} + c,$$

où A(a), B(b).

• Soit $f: \mathcal{E} \to \mathcal{E}$ une application dont l'expression par affixe est $z' = az + b\bar{z} + c$ pour $a,b,c \in \mathbb{C}$ fixés. On va montrer qu'elle est affine, c'est-à-dire que l'application

$$L_O: \quad E \rightarrow E$$

 $\overrightarrow{u} \mapsto f(O + \overrightarrow{u}) - f(O)$

est linéaire pour un élément $O \in \mathcal{E}$ fixé. Or on pourra constater que si \overrightarrow{u} est d'affixe u, alors $L_O(u) = au + b\overline{u}$ qui est bien linéaire.

(Remarquer qu'on s'autorise ici un abus de notation.)

EXERCICE 3.9. :

- 1. Soit $f_{\varphi,\psi} = \varphi \circ \psi \circ \varphi^{-1} \circ \psi^{-1}$. Le groupe $O^+(2)$ étant commutatif, on trouve $\overrightarrow{f} = Id$. f est donc une translation.
- **2.** Soit \mathcal{B} une partie bornée du plan et $\mathcal{I}(\mathcal{B})$ l'ensemble des déplacements qui conservent \mathcal{B} . Si $\mathcal{I}(\mathcal{B})$ est non commutatif, il existe $\varphi, \psi \in \mathcal{I}(\mathcal{B})$ tels que $f_{\varphi,\psi} \neq Id$. D'après la question précédente, c'est donc une translation de vecteur u non nul. Soit $M \in \mathcal{B}$. On pose $M_n = t_u^n(M)$ pour tout $n \in \mathbb{N}$. M_n est donc une suite d'éléments de \mathcal{B} dont la norme tend vers l'infini. C'est contradictoire.
- **3.** Supposons que G soit un sous-groupe fini du groupe des déplacements affines. Supposons que G ne soit pas commutatif. De la même manière que précédemment, on peut construire une suite infinie de translations $\{t_{nu}\}_{n\in\mathbb{N}}$ dans G, ce qui contredit le fait que G est fini.

EXERCICE 3.10.:

On pose $G = \{g_1, \dots, g_n\}$, M un point du plan et

$$\Omega = \overline{\{g_1(M), \dots, g_n(M)\}}.$$

 Ω est un point fixe pour tout $g\in G$:

Soit $g \in G$. g conservant les barycentres et l'application $g_i \mapsto g \circ g_i$ étant un automorphisme de G, on a bien $g(\Omega) = \Omega$.

EXERCICE 3.11.:

On suppose dans un premier temps que k=1. Les ensembles demandés sont les demi-plan séparés par la médiatrice de [AB].

Si $k \neq 1$, on étudie l'ensemble des points solutions. On reprend les notations de l'exercice 2.7. et on pose \mathcal{C} le cercle solution de MA = kMB. Le signe de MA - kMB est alors le même que celui de $f(O) + (1 - k^2)MO^2$, où $O = \overline{\{}(A,1), (B,-k^2)\}$. Or on a

$$f(0) + (1 - k^2)MO^2 = (1 - k^2)MO^2 - \frac{k^2AB^2}{1 - k^2}$$

En conclusion, le lieu des point M tels que MA < kMB est $\begin{cases} \text{l'intérieur du cercle } \mathcal{C} & \text{si } 0 < k < 1 \\ \text{l'extérieur du cercle } \mathcal{C} & \text{si } k > 1. \end{cases}$

De même, le lieu des point M tels que MA > kMB est l'extérieur du cercle \mathcal{C} si 0 < k < 1 l'intérieur du cercle \mathcal{C} si k > 1.

Remarque: L'ensemble des points M solutions de l'équation MA = kMB sont les points situés sur le cercle de diamètre [IJ], où $I = \overline{\{(A,1)(B,-k)\}}$ et $J = \overline{\{(A,1)(B,k)\}}$:

$$\begin{split} MA &= kMB \iff MA^2 - k^2MB^2 = 0 \\ &\Leftrightarrow (\overrightarrow{MA} - k\overrightarrow{MB}).(\overrightarrow{MA} + k\overrightarrow{MB}) = 0 \\ &\Leftrightarrow (1-k)\overrightarrow{MI}.(1+k)\overrightarrow{MJ} = 0 \\ &\Leftrightarrow \overrightarrow{MI}\bot\overrightarrow{MJ}. \end{split}$$

EXERCICE 3.12.:

On note respectivement O, O' et R, R' les centre et rayon des cercles C et C'.

• Analyse :

Supposons que s soit une similitude envoyant \mathcal{C} sur \mathcal{C}' . On note k son rapport. La similitude étant bijective, le fait que M' balaie \mathcal{C}' entraı̂ne immédiatement, par unicité du centre d'un cercle que O'' = O' et $k = \frac{R'}{R}$.

Supposons que s ne soit pas une translation. Alors s admet un centre noté Ω . Soit $M \in \mathcal{C}$. On note O'' = s(0) et M' = s(M). On a

$$R' = O''M' = s(O)s(M) = kOM = kR.$$

Son centre Ω vérifie $\Omega O' = k\Omega 0$. Il est donc

- ou bien sur le cercle de diamètre [IJ], où $I = \overline{\{(O',1)(O,-k)\}}$ et $J = \overline{\{(O',1)(O,k)\}}$ si $R' \neq R$ (c.f. exercice 2.7),
- ou bien sur la médiatrice de [OO'] si R' = R et $O \neq O'$ (c.f. exercice 2.7),
- ou bien sur O si O = O'. (Dans ce cas, c'est une homothétie de centre O.)

s ne peut être une translation seulement si on a R' = R.

• Réciproque :

Supposons que $O \neq O'$.

Si s est une similitude de rapport k tel que $k = \frac{R'}{R}$ de centre Ω sur le cercle de diamètre [IJ] si $k \neq 1$ ou sur la médiatrice de [OO'] si k = 1, et d'angle $\theta = (\overrightarrow{\Omega O}, \overrightarrow{\Omega O'})$, la condition sur Ω étant équivalente à $\Omega O' = k\Omega$, on vérifie directement que s(O) = O' et par suite, que s(C) = C'.

Supposons que O = O'.

Il est clair que l'homothétie de rapport $k = \frac{R'}{R}$ envoie \mathcal{C} sur \mathcal{C}' .

EXERCICE 3.13.:

On pose $u = \overrightarrow{FF'}$ et $\theta = (\mathcal{D}, \mathcal{D}')$ (π). Alors $r_{F',\theta} \circ t_u$ envoie \mathcal{D} sur une droite \mathcal{D}'' parallèle à \mathcal{D}' et F sur F'. Soit Δ une droite passant par F' non parallèle à \mathcal{D}' et donc non parallèle à \mathcal{D}'' . On pose respectivement I le point d'intersection de Δ et \mathcal{D} et J le point d'intersection de Δ et \mathcal{D}'' . Notons que $J \neq F$, sinon $F' \in \mathcal{D}$ (vérifier pourquoi). $h_{F,\frac{FI}{FJ}}$ envoie \mathcal{D}'' sur \mathcal{D}' et fixe F'.

Conclusion $h_{F, \frac{FI}{2}} \circ r_{F', \theta} \circ t_u$ convient.

EXERCICE 3.14. :

Comme J est du même coté de [BC] que A, on a

On en déduit que (AI) est la bissectrice intérieure de l'ange en A.

[IJ] étant un diamètre du cercle, le triangle IAJ est rectangle en A. Autrement dit, $(AJ)\bot(AI)$ entraı̂ne que (AJ) est la bissectrice extérieure de l'angle en A du triangle ABC.

EXERCICE 3.15. :

On note $\mathcal C$ le cercle circonscrit à ABC et H l'orthocentre de ABC.

1. Les points D, E, F sont sur \mathcal{C} :

D'après les résultats obtenus dans l'exercice 2.17, on sait que l'orthocentre est sur les cercles $\mathcal{C}_{AB}, \mathcal{C}_{BC}, \mathcal{C}_{CA}$ symétriques de \mathcal{C} respectivement par-rapport à (AB), (BC) et (CA). On en déduit que $D = s_{(AB)}(H) \in s_{(AB)}(\mathcal{C}_{AB}) = \mathcal{C}$. De même, on obtient également $E, F \in \mathcal{D}$.

2. On va montrer que (AH) = (AD) est la bissectrice intérieure de DEF :

Le point C étant sur $\mathcal C$ du même coté de (AF) que D, on a

$$(\overrightarrow{DA}, \overrightarrow{DF}) = (\overrightarrow{CA}, \overrightarrow{CF}) (2\pi).$$

De plus, (CF) et (AB) sont orthogonaux. Autrement dit, on a $(\overrightarrow{DA}, \overrightarrow{DF}) = (\overrightarrow{CA}, \overrightarrow{CF})$ (2π) De même, on obtient $(\overrightarrow{DE}, \overrightarrow{DA}) = \frac{\pi}{2}(\overrightarrow{AB}, \overrightarrow{AC})$ (2π) .

Les autres bissectrices intérieures se démontre de la même manière, par permutation cyclique des points.

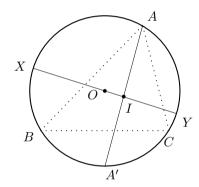
3. Construction:

On se donne un triangle DEF. On construit ses bissectrices intérieures et son cercle circonscrit. Les sommets A,B,C sont les points d'intersection du cercle et des bissectrices.

EXERCICE 3.16.:

1. On montre que les triangles AIX et YA'I sont semblables :

On va montrer que deux des angles sont égaux.



On a $(\overrightarrow{IY}, \overrightarrow{IA'}) = (\overrightarrow{IX}, \overrightarrow{IA})$. De plus, on a également

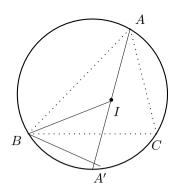
$$(\overrightarrow{XI}, \overrightarrow{XA}) = (\overrightarrow{XY}, \overrightarrow{XA}) (\pi)$$

= $(\overrightarrow{A'Y}, \overrightarrow{A'A}) (\pi)$

 $(\overrightarrow{A'I}, \overrightarrow{A'Y})$. Autrement dit, deux des angles géométriques des triangles AIX et YA'I sont égaux. Ils sont donc semblables.

2. Le triangle BIA' est isocèle en A':

On va montrer que les angles $(\overrightarrow{BA'}, \overrightarrow{BI})$ et $(\overrightarrow{IB}, \overrightarrow{IA'})$ sont égaux.



On a

$$\begin{array}{rcl} (\overrightarrow{BA'},\overrightarrow{BI}) & = & (\overrightarrow{BA'},\overrightarrow{BC}) + (\overrightarrow{BC},\overrightarrow{BI}) \\ & = & (\overrightarrow{AA'},\overrightarrow{AC}) + (\overrightarrow{BC},\overrightarrow{BI}) \end{array}$$

et

$$\begin{array}{rcl} (\overrightarrow{IB},\overrightarrow{IA'}) & = & \pi - (\overrightarrow{IA},\overrightarrow{IB}) \\ & = & \pi - (\pi - (\overrightarrow{AB},\overrightarrow{AI}) - (\overrightarrow{BI},\overrightarrow{BA})) \\ \text{D'où } (\overrightarrow{BA'},\overrightarrow{BI}) = (\overrightarrow{IB},\overrightarrow{IA'}). \end{array}$$

3. Formule d'Euler:

Comme les triangles IXA et IYA' sont semblables, on a

$$\overline{IA}.\overline{IA'} = \overline{IX}.\overline{IY}.$$

Un calcul de $\overline{IX}.\overline{IY}$ par introduction de O donne

$$\overline{IX}.\overline{IY} = OI^2 - R^2.$$

On montre également que $\overline{IA}.\overline{IA'}=2Rr.$ En effet, on a $r=\sin(a/2).IA.$

De plus, on a IA' = BA'. Si on pose A'' le point du cercle distinct de A' sur la droite (OA'), on obtient un triangle A''BA' rectangle en B dont l'angle en A'' est a/2 (théorème de cocyclicité). On en déduit que $BA' = \sin(a/2).2R$, d'où le résultat.

4. Inégalité d'Euler :

Elle se déduit de la formule d'Euler et du fait que $OI^2 \ge 0$.

Remarque: Au lieu de montrer que les triangles AXI et YA'I sont semblables, on aurait pu utiliser ici directement la puissance d'un point par-rapport à un cercle.

Rappel (puissance d'un point par-rapport à un cercle):

Soit $\mathcal{C}(O,R)$ un cercle de centre O et de rayon R. Soit I

un point de l'espace. Pour tous points $M, N \in \mathcal{C}$ tels que I, M, N sont alignés, on a

$$\overline{IM}.\overline{IN} = OI^2 - R^2.$$

(Autrement dit, $\overline{IM}.\overline{IN} = \overline{IM'}.\overline{IN'}$ pour tous points $M, N, M', N' \in \mathcal{C}$ tels que I, M, N alignés et I, M', N'alignés.

EXERCICE 3.17.:

1. On considère l'application φ : (P,Q,R)

Elle est continue. Elle admet donc un minimum sur le compact $[BC] \times [AB] \times [AC]$.

2. À $P \in [BC]$ fixé, on montre qu'il existe $Q \in [AC]$ et $R \in [AB]$ tels que PQR soit de périmètre minimal :

On note R_1 et Q_1 les images de P respectivement par les symétries orthogonales par-rapport à AB et AC (de manière à ce que la droite (AB) soit la médiatrice de PR_1 et (AC) soit la médiatrice de PQ_1 .)Soient alors Q, R les points situés à l'intersection de la droite (R_1Q_1) et des droites (AB), (AC). Les trois angles étant aigus, on a $Q \in [AB]$ et $R \in [AC]$. La distance $PQ + QR + RP = R_1Q + QR + RQ_1$ est donc minimale et les points Q, R ainsi construits répondent à la question

3. Problème général:

Analyse: Supposons que P, Q, R répondent au problème. A étant sur la médiatrice de $[PR_1]$ et sur la médiatrice de $[PQ_1]$, on a

$$AR_1 = AP = AQ_1.$$

Le triangle AR_1Q_1 est donc isocèle en A de base R_1Q_1 De plus, on a $(\overrightarrow{AR_1}, \overrightarrow{AQ_1}) = 2(\overrightarrow{AB}, \overrightarrow{AC})$. Comme \overrightarrow{PQ} + QR + RP est minimal, on a R_1Q_1 minimal. Comme le triangle AQ_1R_1 est isocèle avec un angle en A constant par-rapport à P, la base est de longueur minimale si et seulement si le coté $AR_1 = AQ_1$ est minimal. Or $AR_1 = AQ_1 = AP$. Ainsi AP est minimal, ce qui est

réalisé seulement si P est le pied de la hauteur du tri- Autrement dit, on a angle ABC.

Penser à faire la synthèse!

4. Les hauteurs de ABC sont les bissectrices intérieures du triangle PQR: c'est l'exercice 3.15.

EXERCICE 3.18.:

Soit Δ la droite passant par C et parallèle à (AP). On note C' sont point d'intersection avec (AB). (Ce point existe, le périfier). Par le théorème de Thalès, on a l'éga-

$$\frac{\overline{PB}}{\overline{PC}} = \frac{\overline{AB}}{\overline{AC}}.$$

Le calculs suivants de feront modulo π . On a

$$(\overrightarrow{CC'}, \overrightarrow{CA}) = -(\overrightarrow{AC}, \overrightarrow{AC'}) - (\overrightarrow{C'A}, \overrightarrow{C'C})$$

$$= (\overrightarrow{AB}, \overrightarrow{AC}) - (\overrightarrow{AB}, \overrightarrow{AP})$$

$$= (\overrightarrow{AP}, \overrightarrow{AC}).$$

La combinaison du résultat $(\overrightarrow{C'A}, \overrightarrow{C'C}) = (\overrightarrow{AB}, \overrightarrow{AP})$ et du résultat précédent permet de dire que (AP) est la bissectrice de l'angle si et seulement si le triangle AC'Cest isocèle en A. Or. AC'C est isocèle en A si et seulement si AC = AC'. Grâce au résultat préliminaire sur les rapports des dimensions, on en déduit que (AP) est une bissectrice si et seulement si $\frac{PB}{PC} = \frac{AB}{AC}$

EXERCICE 3.19. :

Soit C' le point d'intersection de la parallèle à (AP)passant par C. Le théorème de Thalès nous donne immédiatement que

$$\frac{PB}{PC} = \frac{AC'}{AC}.$$

$$\frac{PB}{PC} = \frac{AB}{AC} \Leftrightarrow AC = CC'$$

$$\Leftrightarrow ACC' \text{ est isocèle en } C'$$

$$\Leftrightarrow (C'C, C'A) + 2(AB, AC) = 0 (\pi)$$

$$\Leftrightarrow 2(AB, AC) = (AP, AB) (\pi)$$

$$\Leftrightarrow (AP) \text{ est la bissectrice de } BAC.$$

EXERCICE 3.20. :

Dans tous les cas, on pose $u = \overrightarrow{AA'}$ et $\theta = (\overrightarrow{AB}, \overrightarrow{A'B'})$ et $\varphi = r_{A'} \, \theta \circ t_u$. On obtient par construction que $\varphi(A) =$

$$A'$$
 et $\varphi(B) = B'$. On pose $\psi = \begin{cases} id & \text{si } \varphi(C) = C' \\ s_{(AB)} & \text{sinon,} \end{cases}$

où $s_{(AB)}$ est une réflexion orthogonale d'axe (A'B'). Quitte à composer par φ , on peut donc supposer que A = A' et B = B'. On va alors montrer dans tous les cas qu'on a bien $\psi(C) = C'$. Le cas C = C' étant trivial, on se placera systématiquement dans l'hypothèse contraire et on note $C'' = \psi(C')$.

- 1. Grâce aux égalités AC = A'C' et $|(\overrightarrow{AB}, \overrightarrow{AC})| =$ $|(\overrightarrow{AB}, \overrightarrow{AC})|$, on obtient $(\overrightarrow{A'B'}, \overrightarrow{A'C'}) = -(\overrightarrow{AB}, \overrightarrow{AC})$ (sinon, C = C'). Par réflexion, on obtient alors $(\overrightarrow{AB}, \overrightarrow{AC''}) = -(\overrightarrow{AB}, \overrightarrow{AC'}) = (\overrightarrow{AB}, \overrightarrow{AC})$. Les points A, C, C'' sont donc alignés sur une même demi droite d'origine A. Par isométrie, on a AC'' = AC', ce qui achève de montrer que C'' = C grâce à l'hypothèse AC = AC'.
- 2. Supposons que le triangle ABC soit direct. On a deux possibilités : A'B'C' direct ou A'B'C' indirect.

Dans le premier cas, on a $(\overrightarrow{AB}, \overrightarrow{AC}) = (\overrightarrow{A'B'}, \overrightarrow{A'C'}) =$ $(\overrightarrow{AB}, \overrightarrow{AC'})$ et $(\overrightarrow{BC}, \overrightarrow{BA}) = (\overrightarrow{B'C'}, \overrightarrow{B'A'}) = (\overrightarrow{BC'}, \overrightarrow{BA})$. Autrement dit, on obtient $C' \in (AC) \cap (CB) = \{C\}.$

Dans le deuxième cas, on a $-(\overrightarrow{AB}, \overrightarrow{AC''}) = (\overrightarrow{AB}, \overrightarrow{AC}) =$ $-(\overrightarrow{A'B'}, \overrightarrow{A'C'}) = -(\overrightarrow{AB}, \overrightarrow{AC'}) \text{ et } -(\overrightarrow{BC''}, \overrightarrow{BA}) =$ $(\overrightarrow{BC}, \overrightarrow{BA}) = -(\overrightarrow{B'C'}, \overrightarrow{B'A'}) = -(\overrightarrow{BC'}, \overrightarrow{BA})$. Autrement dit, on obtient $C' \in (AC'') \cap (C''B) = \{C''\}.$

3. On peut par exemple se ramener à un des deux cas 3. On note P' le symétrique de P, ainsi que A', B', C' les précédents grâce à l'exercice 3.2.

EXERCICE 3.21.:

1. φ est une isométrie positive du plan. C'est donc une rotation d'angle $\alpha + \beta + \gamma = \pi$. Autrement dit, c'est une symétrie centrale.

2. $\varphi(J) = J$:

On note $J_A, J_B = j, J_C$ les projections du centre du cercle circonscrit respectivement sur les cotés (BC), (AC), (AB). Vérifier qu'on a $BJ_C = BJ_A$. $AJ_B = AJ_C$, $CJ_A = CJ_B$. On en déduit alors que $\varphi: J = J_B \mapsto J_A \mapsto J_C \mapsto J_B = J.$

En conclusion, φ est une symétrie centrale de centre J.

EXERCICE 3.22. :

- 1. $\mathcal{A}(ABC) = \mathcal{A}(ABP) + \mathcal{A}(ACP) = \frac{1}{2}(br_b + cr_c)$. De plus, on a $\mathcal{A}(ABC) = a.AH$ où \tilde{H} est le pied de la hauteur issue de A. Par projection, on sait que $AP \leq AH$ d'où le résultat.
- **2.** Soit P à l'intérieur du triangle ABC et $P' = (AP) \cap$ (BC). On sait alors que $P' \in [BC]$. On peut lui appliquer l'inégalité de la première question. On obtient

$$aR'_a \geqslant \frac{1}{2}(br'_b + cr'_c).$$

On note k le rapport de l'homothétie h qui envoie P'sur P. On vérifiera qu'on a bien $r_b = k.r'_b$, $r_c = k.r'_c$ et $R_a = k.R'_a$, autrement dit, on a

$$ak.R_a \geqslant \frac{1}{2}(bk.r_b + ck.r_c)$$

ce qui donne bien le résultat cherché

$$a.R_a \geqslant \frac{1}{2}(b.r_b + c.r_c).$$

symétriques de A, B, C par rapport à la bissectrice intérieure de l'angle en A.

Notons que P' est à l'intérieur du triangle A'B'C' et qu'on peut donc lui appliquer le résultat

$$a.R'_{a} \geqslant \frac{1}{2}(b.r'_{b} + c.r'_{c}).$$

Or, par symétrie, on a AP = A'P' = AP', autrement dit $R'_a = R_a$. Par préservation des projections, on a également $r'_b = r_c$ et $r'_c = r_b$. D'où le résultat cherché.

4. On considère les trois inégalités $a.R_a \geqslant \frac{1}{2}(b.r_b + c.r_c)$, $b.R_b \ge \frac{1}{2}(a.r_a + c.r_c)$ et $c.R_c \ge \frac{1}{2}(a.r_a + b.r_b)$ que l'on multiplie respectivement par bc, ac et ab. On additionne puis la division par *abc* donne le premier résultat cherché.

Le deuxième résultat repose sur l'inégalité (à connaître!)

$$x^2 + y^2 \geqslant 2xy.$$

(Se démontre grâce à $0 \le (x-y)^2 = x^2 + y^2 - 2xy$).

- 5. Supposons que ABC soit un triangle équilatéral et que P soit son centre. Comme on a $R_a = R_b = R_c$ et $r_a = r_b = r_c$, l'inégalité devient en fait $R \geqslant 2r$. Or comme P est le centre de gravité du triangle, si on note $H_A = (AG) \cap (BC)$, on sait que $PA = 2PH_A$. Or, ici, on a $H_A = r$, ce qui montre bien que l'inégalité est une égalité.
- Supposons maintenant que l'inégalité soit une égalité. Ceci implique qu'on a en particulier les deux égalités suivantes:

$$(eg_1): R_a + R_b + R_c = \frac{b^2 + c^2}{bc}r_a + \frac{c^2 + a^2}{ca}r_b + \frac{a^2 + b^2}{ab}r_c$$

$$(eg_2): \frac{b^2+c^2}{bc}r_a + \frac{c^2+a^2}{ca}r_b + \frac{a^2+b^2}{ab}r_c = 2(r_a+r_b+r_c).$$

On considère (eg_1) . Elle équivaut à

$$(b-c)^{2}r_{a} + (c-a)^{2}r_{b} + (b-a)^{2}r_{c} = 0$$

autrement dit, a = b = c (car $r_a, r_b, r_c > 0$). Le triangle est donc équilatéral. Montrons maintenant que P est le centre du triangle.

On considère (ea_1) qui devient

$$R_a + R_b + R_c = 2(r_a + r_b + r_c)$$

et qui équivaut à

$$R_a + R_b + R_c = (r_b + r_c) + (r_a + r_c) + (r_a + r_b).$$

Comme on a $R_a \geqslant r_b + r_c$ (ainsi que toutes les égalités correspondant aux permutations de a, b, c), on a

$$R_a = r_b + r_c$$

$$R_b = r_a + r_c$$

$$R_c = r_a + r_b$$

Une résolution d'équations donne $R_a = R_b = R_c$, autrement dit, P est le centre du triangle.

Exercice 3.23.:

1. Soit Δ la médiatrice de [AB], de sorte qu'on ait $O \in \Delta$. Δ est également la médiatrice de [BD]. En effet, Si Δ' est la médiatrice de [BC], on a $\Delta' \perp (BD)//(AC) \perp \Delta$ et $O \in \Delta'$. Or deux droites parallèles ayant un point en commun sont identiques.

Conclusion : la symétrie orthogonale d'axe Δ envoie le couple (A, B) sur le couple (C, D) et fixe O. On en tire l'égalité d'angles

$$(\overrightarrow{OA}, \overrightarrow{OB}) = -(\overrightarrow{OC}, \overrightarrow{OD}) = (\overrightarrow{OD}, \overrightarrow{OC}).$$

2. On pose Δ_i la perpendiculaire à D_i passant par O et r_i la symétrie orthogonale par-rapport à Δ_i . Par construction, on a

$$\begin{array}{lll} M_1 &= r_1(M_0) \\ M_2 &= r_2(M_1) \\ M_3 &= r_3(M_2) \\ M_4 &= r_1(M_3) \\ M_5 &= r_2(M_4) \\ M_6 &= r_3(M_5). \end{array}$$

On pose $\varphi = (r_3 \circ r_2 \circ r_1)^2$. Par composition, φ est une isométrie positive avec un point fixe O. C'est donc une rotation de centre O et d'angle $2((\Delta_1, \Delta_2) + (\Delta_2, \Delta_3) + (\Delta_3, \Delta_1)) = 2(\Delta_1, \Delta_1) = 0$ (2π) . C'est donc l'identité. On en déduit que $M_6 = \varphi(M_0) = M_0$.

EXERCICE 3.24.:

On utilise la version du théorème de l'angle inscrit avec la tangente. On a

$$(TB, TM) = (CB, CT)$$

= (NB, NM) .

Grâce au théorème de cocyclicité classique, on obtient bien M, N, C, T cocycliques.

EXERCICE 3.25.:

1. (BE, EF) = (AB, AC):

E et F sont sur le cercle de diamètre [AB]. Par cocyclicité, on a

$$(EB, EF) = (AB, AF)$$
$$= (AB, AC).$$

Or (EB, EF) = (BE, EF), d'où le résultat.

2. On a (DB, EF) = (EB, EF) = (AB, AC). On obtient donc

$$\begin{array}{ll} ABCD \ \text{cocycliques} & \Leftrightarrow & (AB,AC) = (DB,DC) \\ & \Leftrightarrow & (DB,EF) = (DB,DC) \\ & \Leftrightarrow & (EF)//(DC). \end{array}$$

EXERCICE 3.26. :

On utilise la cocyclicité et le relation de Chasles dur

les angles pour établir l'ensemble des égalités ci-dessous :

$$(AB, AD) = (AB, AA') + (AA', AD)$$

$$= (B'B, B'A') + (D'A', D'D)$$

$$= (B'B, B'C') + (B'C', B'A') +$$

$$(D'A', D'C') + (D'C', D'D)$$

$$= (CB, CC') + (B'C', B'A') +$$

$$(D'A', D'C') + (CC', CD)$$

$$= (CB, CD) + (B'C', B'A') + (D'A', D'C')$$

Ainsi,

$$\begin{array}{l} ABCD \ \text{cocycliques} \ \Leftrightarrow \ (AB,AD) = (CB,CD) \\ \Leftrightarrow \ (B'C',B'A') + (D'A',D'C') = 0 \\ \Leftrightarrow \ B'C'A'D' \ \text{cocycliques}. \end{array}$$

EXERCICE 3.27. :

$$(QP,QR) = (QP,QM) + (QM,QP)$$

= $(CP,CM) + (AM,AR)$ (cocyclicité)
= $(BC,CM) + (AM,BA)$

D'où

$$Q, P, R$$
 alignés $\Leftrightarrow (QP, QR) = 0$
 $\Leftrightarrow (BC, CM) = -(AM, BA)$
 $\Leftrightarrow (CB, CM) = (AB, AM)$
 $\Leftrightarrow A, B, C, D$ cocycliques.

EXERCICE 3.28.:

1. Soit h l'homothétie de centre M et de rapport $\frac{1}{2}$. On pose P,Q,R les images respectives de P,Q,R par h. Ainsi, P',Q',R' sont alignés si et seulement si P,Q,R le sont. Comme P,Q,R sont en fait les projeté de M sur les cotés, d'après l'exercice précédent, ils sont alignés si et seulement si M,A,B,C sont cocycliques.

2. On pose H l'orthocentre de ABC, H' le symétrique de H par-rapport à (BC) et \mathcal{C} le cercle circonscrit à ABC. D'après l'exercice 2.17, on sait que $M \in \mathcal{C}$.

EXERCICE 3.29. :

On pose C_A, C_B, C_B les cercles énoncés passant respectivement par A, B, C.

• Supposons que C_A et C_B se coupent en $O \neq A', B'$. On va montrer que $O \in C_C$:

$$(OB', OC') = (OB', OA') + (OA', OC')$$

= $(CB'CA') + (BA', BC')$
= $(CA, CB) + (BC, BA)$
= (AC, AB)
= (AB', AC') .

Aussi, les points A, B', C', O sont cocycliques.

• Si $C_A \cap C_b = \{A'\}$, les triangles BC'A' et A'B'C sont respectivement rectangles en C' et B'. Les angles droits obtenus permettent ensuite d'affirmer que A, C', A', B' cocycliques.

(Si $\mathcal{C}_A \cap \mathcal{C}_b = \{B'\}$, le résultat se démontre de la même manière.)

EXERCICE 3.30.:

On choisit $A \in D_1$. On pose $D_2' = r_{A,\frac{\pi}{3}}(D_2)$. Alors $C \in D_2' \cap D_3$ ($C = r_{A,\frac{\pi}{3}}(B) \in r_{A,\frac{\pi}{3}}(D_2) = D_2'$.) Le triangle ABC équilatéral direct vérifiera alors $B \in D_2$.

EXERCICE 3.31.:

On suppose ABC direct. On pose α un troisième point tel que $B\alpha C$ soit rectangle isocèle en α extérieur à ABC. On se donne

$$s = s_{C, \frac{1}{\sqrt{2}}, -\frac{\pi}{4}} \circ s_{B, \sqrt{2}, -\frac{\pi}{4}}.$$

Alors $s(\beta) = \gamma$ et $s(I) = I$, autrement dit, s est la sin	nili-
tude de centre I, de rapport 1 et d'angle $-\frac{\pi}{2}$. On tro	
alors $(\overrightarrow{I\beta}, \overrightarrow{I\gamma}) = (\overrightarrow{I\beta}, \overrightarrow{Is(\beta)}) = -\frac{\pi}{2}$ et $I\beta = I\gamma$.	
aiors $(1\beta, 1\gamma) = (1\beta, 13(\beta)) = \frac{1}{2} \text{ ct } 1\beta = 1\gamma.$	

On suppose ABCD direct. On considère les deux similitudes $s_1 = s_{C,\frac{1}{\sqrt{2}},-\frac{\pi}{4}} \circ s_{A,\sqrt{2},-\frac{\pi}{4}}$ et $s_2 = s_{A,\frac{1}{\sqrt{2}},-\frac{\pi}{4}} \circ s_{A,\sqrt{2},-\frac{\pi}{4}} \circ$

EXERCICE 3.32.:

$$s_1 = s_{I,1,-\frac{\pi}{2}} = s_2,$$